Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2020

A New Approach to Constructing Models of Electron Diffusion by EMIC Waves in the Radiation Belts

Electromagnetic ion cyclotron (EMIC) waves play an important role in relativistic electron losses in the radiation belts through diffusion via resonant wave-particle interactions. We present a new approach for calculating bounce and drift-averaged EMIC electron diffusion coefficients. We calculate bounce-averaged diffusion coefficients, using quasi-linear theory, for each individual Combined Release and Radiation Effects Satellite (CRRES) EMIC wave observation using fitted wave properties, the plasma density and the background magnetic field. These calculations are then combined into bounce-averaged diffusion coefficients. The resulting coefficients therefore capture the combined effects of individual spectra and plasma properties as opposed to previous approaches that use average spectral and plasma properties, resulting in diffusion over a wider range of energies and pitch angles. These calculations, and their role in radiation belt simulations, are then compared against existing diffusion models. The new diffusion coefficients are found to significantly improve the agreement between the calculated decay of relativistic electrons and Van Allen Probes data.

Ross, J.; Glauert, S.; Horne, R.; Watt, C.; Meredith, N.; Woodfield, E.;

Published by: Geophysical Research Letters      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088976

Radiation belts; EMIC waves; electron diffusion; Van Allen Probes

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV electrons are dominantly controlled by hiss near the loss cone but by chorus at intermediate to large pitch angles. The simulated electron distributions driven by combined diffusion can reproduce the majority of the observations. Our results provide a direct observational evidence that hiss and chorus can simultaneously occur at the same electron drifting shells due to the irregular plasmasphere and highlight the importance of their combined effect on electron dynamics.

Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088753

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS



  1